
131

Інформатика, обчислювальна техніка та автоматизація

UDC 004.9
DOI https://doi.org/10.32782/2663-5941/2023.1/20

Falkevych V.G.
Zaporizhzhia National University

Lisniak A.O. 
Zaporizhzhia National University

METHODOLOGY OF CACHE INVALIDATION IN MICROSERVICES 
ARCHITECTURE OF THE WEB APPLICATIONS

In the article are considered existing approaches, methods of using cashing in scalable web systems and 
decisions proposed in related works. Created a methodology of cache invalidation in microservices archi-
tecture. The object of researching is a process of creating a methodology of cache invalidation. Methods of 
researching are based on modeling cache management processes and services cooperation. Defined require-
ments for cache invalidation systems: splitting of area responsibilities, invalidation only part of caching, pre-
vention of repeating cache invalidation by time, non-blocking operation. Described all steps of the system`s 
components cooperation that includes API gateway, cache service, cache, application services. Described 
examples of using an application with cache service for keeping cache fresh. In the article are included 1 figure 
with schematic components of the application architecture, 2 sequence diagrams with steps of system elements 
cooperation in time. Defined main principles in the microservices architecture with cache system: cache inval-
idation abstraction from the inside services to the cache service by creation cache schema for every services; 
describing rules of preparation API responses; requesting to the cache from services only through the cache 
service; using API gateway as a router between services; changing cache schema should not affect to the work 
of the cache service. Researched base necessary rules for cache invalidation: cache schema, response schema 
(or response prepare handler), action. Cache schema describes an object as value from the service depend 
on type and name of the request; response handler or response schema – are rules or ready for using function 
(after decoding) for preparing response before client receives response. Action – is a type of command that 
should be done (створити, оновити, видалити).

Key words: cache, PASS, Redis, Memcashed, ElastiCache, Memorystore, API, cache invalidation, microservice.

Problem definition. Nowadays the understanding 
of using microservices approaches in the development 
of scalable projects have become a necessity. 
Code splitting, areas of responsibility, business 
logic and views is a common using practice for 
modern developers. Users become more templated, 
systems are more demanded of resources. Ways 
of optimization are improved everyday, same as 
technologies which allow us to achieve these goals 
[1]. Using caching methodologies and different ways 
allow to decrease loading for servers, help to make 
systems more effective and scalable, reduce count 
of requests to databases and catching deadlocks, 
time for making selection data for next calculation 
before response [2]. A key-value storage is one of 
the best ways to get access to useful data without 
heavy selection demand of resources. But nothing is 
taken nowhere and does not lead anywhere. Every 
improvement resolving some field of problem brings 
another inconvenience. For instance, managing cache 
storage, making additional infrastructure which 
allows it to work with this storage, scaling storage, 

mechanisms of synchronization with databases. 
Another inconvenience we can face with – is getting 
expired data. 

Analysis of recent research and publications. 
Considering cache systems and approaches can be 
highlighted the most popular and common using of 
them: Memcached or Redis. Cache – is a key-value 
storage which keeps data in memory without saving it 
like persistent files [3]. It allows you to avoid a process 
of reading/writing data from files to RAM. So Redis 
or Memcached allows you to get stored data as fast as 
RAM memory can do it. Many companies offer ready 
solutions like cloud caching like PASS (platform as 
service), for example, Amazon ElastiCache, Google 
Memorystore etc.

Describe the principle as cache works. When an 
application tries to get some data from a database, 
make a request to the cache. If the data by key exists, 
return it. In another way return data from the database 
and store in the cache to further requests. Saving data 
in cache is necessary to set up time for caching. It can 
be a timestamp with the date when cache by key was 



Том 34 (73) № 1 2023132

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

written [4]. Having timestamp different approaches 
can be implemented for keeping data in the cache 
fresh. For instance, cache can be invalidated by 
comparing actual time with timestamp when a request 
is made by an application. Another way implies using 
planning tools like CRON for invalidation cache 
bypassing all keys step by step comparing actual date 
with timestamp [5]. 

First way of cache invalidation can seem more 
preferable than bypassing all values. But it can also 
have disadvantages. To point them consider using 
caching in MVC systems (model view controller). 
Model is responsible for getting data. It can be data from 
a database or data from API. Writing models developers 
should make decisions about what data should be stored 
in cache, what data can be updated [5]. Similar approach 
can be proposed in modern front-end development 
using UI building libraries like React, Angular, VueJS 
on the rope with local cache management using Apollo 
GraphQL. In both cases developers should make 
decisions about which data should be updated in cache. 
It would be good to have an opportunity for flexible 
tools for cashing. But returning to the principle of code 
and duties splitting, the logic of cashing and business 
logic intertwines in the code [6, p. 136]. 

The main reason why developers make decisions 
about the necessity of updating cache is that no one 
wants to get expired data. Should be another way 
for working with cache. Microsoft has offered to use 
NCache instead Redis for caching. This technology 
allows synchronization with databases [2]. 
Developers should not describe caching mechanisms 
in their code that allow them to follow the fifth rule 
of SOLID principle (Dependency Inversion. Depend 
upon abstractions, not concretics). 

Take a look at NCache in detail. There are some 
available features using this technology: 

1.	 Pub/Sub Messaging;
2.	 cache distribution;
3.	 SQL searching and grouping;
4.	 database synchronization.
The publishing-subscribing messaging pattern 

allows senders of messages, called publishers, to be 
sent directly to specific receivers, called subscribers, 
but instead categorize published messages into classes 
without knowledge of which subscribers. The events 
are published outside the microservice, to the NCache 
message broker [2]. Each subscriber microservice 
contains an event handler to handle the appropriate 
event once the publisher microservice has published it. 

NCache being In-memory distributed cache allows 
microservices to provide scalability and handle a 
larger number of transactions. 

When so much data is being stored in cache by 
microservices for their app data caching needs, 
then having the ability to quickly find relevant data 
through SQL searching or grouping make it very easy 
to process it [1].

Another feature proposed by Microsoft is 
database synchronization. When the database 
receives some changes, the specific field in the cache 
also updates. To use this opportunity it is necessary 
to set up a connection with the database first using 
API and describe procedures of cache and database 
synchronization, which consist of next steps:

1.	 creating a dependency with stored procedure;
2.	 getting an item from the database;
3.	 generation a unique id for the item;
4.	 creating a new cache item and adding 

dependency to it.
Using database synchronization mechanism it is 

possible to describe all entities that should be updated 
in cache when database updates. It avoids using 
expired cache and supports splitting responsibilities 
comparing the way developers should make decisions 
when cache should be updated [7, p. 14]. The main 
disadvantage in using this approach is binding to 
certain databases and stack of technologies. If a 
developer changes NCache to Redis or Memcashed he 
loses an opportunity to use database synchronization. 
It is necessary to have a unified mechanism of keeping 
cache fresh [8, p. 43]. 

The main purpose of this article is considering 
existing approaches, methods of using cashing 
in scalable web systems and decisions proposing 
in related works. Will be found and offered a 
methodology of cache invalidation in microservices 
architecture. The object of researching is a process 
of creating a methodology of cache invalidation. 
Methods of researching are based on modeling cache 
management processes and services cooperation. 

Main research material. Moving ahead in 
considering systems and technologies for caching 
becomes obvious that cache should be invalidated to 
prevent working with expired data. Developers should 
follow the fifth principle of SOLID (dependency 
inversion) and split areas of responsibilities [9, p. 230]. 

One of the ways to do that is creating an independent 
mechanism for cache invalidation using cache service 
and providing cache schema from the services.

Define requirements for cache invalidation 
methodology:

– splitting of area responsibilities;
– invalidation only part of caching;
– prevention repeating cache invalidation by time;
– non-blocking operation.



133

Інформатика, обчислювальна техніка та автоматизація

According to the inverse dependency principle, 
cache invalidation implementation should not depend 
on microservices logic like microservices logic and 
vice versa [10, p. 179].

 Invalidation mechanism should not affect cache 
that should not be updated. Simultaneously all levels 
of caching should be invalidated by time. If the 
part of cache is invalidated by event, the timestamp 
when cache was rewritten should be updated also. 
An operation for cache updating is sent after service 
has been worked and should obey similar rules. If a 
request to the service and next response initiates the 
cache updating, finite users should not await when 
cache updates. Another similar operation that can be 
sent by service at the same time when cache updating 
should not rewrite or interrupt to work for the system 
[11, p. 1156].

To achieve these requirements, take a look at 
figure 1. The diagram is described here, has next 
components:

– API gateway;
– cache service;
– cache;
– application services.
API gateway receives all requests from the client 

and redirects them to services. Services should 
have schemas that describe a memoization value in 
the cache. That schemas can be changed and cache 
invalidation continues working correctly. All services 
get cache using API gateway through cache service 
for connection to the cache system. Using cache 
schema cache service can update, add or delete 
memoized values. At the same time when the first 
service responds, the data is sent from the service can 
be used in another service without waiting for cache 
service updates. 

Cache service – is an essence that has 
responsibilities:

– updating cache using service`s cache schema 
with data;

– getting data from cache for service.
A process of updating cache should be in parallel 

with working application services. That means no 
one services and API gateway should not wait when 
cache will be updated [12, p. 157].

Consider in detail how the cache invalidation 
system works (figure 1). For instance, there is a 
request that creates a new book in the database. After 
this action happens we would like to add this book to 
the cache without rewriting all books. Making a POST 
request /books/create by client through API gateway 
the request is redirected to the service responsible for 
this route and method [13, p. 54].

 

Fig. 1. application architecture with a cache system

Next step – is processing input data by Book service 
and creating a new book in the database. After that 
the service responds to the API gateway and provides 
a cache schema with data about the created book. 
The gateway makes routing to the service responsible 
for cache invalidation and provides new data and the 
schema. Cache service reads the schema and connects 
with cache and calculates updates depending on input 
data [14, p. 28; 15, p. 519]. 

The schema for caching should include 
comprehensive information about type of request 
(create, update, delete), structure for caching and also 
can be provided rules for data normalization before 
response is returned to the client. That means the API 
should not include overhead information in the response 
about the action that happened. But at the same time 
the cache service needs data to work with, however 
this data is not to be used in the response. Describing 
rules for preparation response we can move the logic 
of preparation of the data for response on another level 
of abstraction. For example, it is possible to create a 
service, responsible only for data preparation before 
response received by client [16, p. 89; 17, p. 52].

 

Fig. 2. A process of cache updating using cache service



Том 34 (73) № 1 2023134

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

That service receives data, rules for data 
preparation, makes preparation and responses to the 
client through API gateway [18, p. 360]. 

Cache updating process can take time and there is 
not any guarantee that this process is finished before 
the next request is called. Considering this aspect 
of asynchronous mechanism cache invalidation and 
working services during one request, it is necessary to 
create a queue in the cache service and keep processes 
here. Only after the first process finishes, the next can 
be started [19, p. 375].

 

Fig. 3. A process of getting a list of books 
from the cache

Take a look at the next example: we make a GET 
request/books for getting a list of books (figure 3). 
First step – is making a request from client to the 
API gateway and it makes route to the Book service. 
This service makes a request to the cache service for 
checking books in the cache through API gateway. 
If books are found in the cache, the Book service 
creates a response. Otherwise this service makes a 
request from the database and gets books from it. 
Responding without schema of cache invalidation 
API gateway understands that response is finite and it 
is not necessary to call cache service [20, p. 87]. 

Considering peculiarities of working services 
with cache must be mentioned working services with 

each other how data can be delivered from service 
to service. For example, an author has private books 
and additional fields that can not be delivered to the 
not authorized user and the author wants to add new 
characteristic values to one of his books. In the case 
when we should be routed to the Auth service (a 
service responsible for authorization), get user`s data 
(if credentials succeed) and get books as authorized 
author from another service, the Auth service calls 
the Book service through API gateway. Then the last 
service creates a new characteristic to the one of the 
author`s book, prepares rules for normalizing the 
response to the client, sending schema for the cache 
invalidation [21, p. 169].

Conclusions. Considered existing approaches, 
methods of using cashing in scalable web systems 
and decisions are proposed in related works. Created 
a methodology of cache invalidation in microservices 
architecture. Have formulated the requirements for 
cache invalidation methodology consists of:

– splitting of area responsibilities;
– invalidation only part of caching;
– prevention repeating cache invalidation by time;
– non-blocking operation.
Have proposed a full flow of cache invalidation. 

Considered components of the application architecture 
with the cache invalidation mechanism:

– API gateway;
– cache service;
– cache;
– application services.
Described examples of using an application with 

cache service for keeping cache fresh. In summary, 
are defined main principles in the microservices 
architecture with cache system: abstraction from the 
services to the cache service by creation cache schema 
for every services; defined rules of preparation API 
response after a service responses; requesting to the 
cache from services only through the cache service; 
using API gateway as a router between services; 
changing cache schema should not affect to the work 
of the cache service.

Bibliography:
1.	 Scale Microservices Performance with Distributed Caching. URL: https://www.alachisoft.com/blogs/

scale-microservices-performance-with-distributed-caching.
2.	 Cache Data Dependency on Database. URL: https://www.alachisoft.com/resources/docs/ncache/prog-

guide/notification-based-dependencies.html.
3.	 Кеширование данных между микросервисами в бессерверной архитектуре. URL: https://habr.com/

ru/post/651829.
4.	 Кэширование в облачном приложении. URL: https://learn.microsoft.com/ru-ru/dotnet/architecture/

cloud-native/azure-caching.
5.	 Кеширование в Laravel: основы плюс tips&tricks. URL: https://habr.com/ru/post/463495.
6.	 Charan, P.S.B., Varshitha, G., Lashya, A., Varma, U.S.R. and Madhusudhan, D., REDIS: IN MEMORY 

DATA STORE. 2022. № 5. P. 132–138.



135

Інформатика, обчислювальна техніка та автоматизація

7.	 Gupta, P., Zeldovich, N. and Madden, S., 2011. A trigger-based middleware cache for ORMs. In Middleware 
2011: ACM/IFIP/USENIX 12th International Middleware Conference, Lisbon, Portugal, December 12-16, 2011. 
Proceedings 12 (pp. 329-349). Springer Berlin Heidelberg.

8.	 Ghandeharizadeh, S. and Shayandeh, S., 2007, April. Greedy cache management techniques for mobile 
devices. In 2007 IEEE 23rd International Conference on Data Engineering Workshop (pp. 39-48). IEEE.

9.	 Katsaros, D. and Manolopoulos, Y., 2003. Cache management for Web-powered databases. In Web-
Powered Databases (pp. 203-244). IGI Global.

10.	Liu, Q. and Yuan, H., 2019. A High Performance Memory Key-Value Database Based on Redis. J. Comput., 
14(3), pp.170-183.

11.	 Carra, D. and Michiardi, P., 2014, June. Memory partitioning in memcached: An experimental performance 
analysis. In 2014 IEEE International Conference on Communications (ICC) (pp. 1154-1159). IEEE.

12.	Gan, Y. and Delimitrou, C., 2018. The architectural implications of cloud microservices. IEEE Computer 
Architecture Letters, 17(2), pp.155-158.

13.	Pavlenko, A., Askarbekuly, N., Megha, S. and Mazzara, M., 2020. Micro-frontends: application of 
microservices to web front-ends. J. Internet Serv. Inf. Secur., 10(2), pp.49-66.

14.	Brown, K. and Woolf, B., 2016, October. Implementation patterns for microservices architectures. In 
Proceedings of the 23rd Conference on Pattern Languages of Programs (pp. 1-35).

15.	Sriraman, A., Dhanotia, A. and Wenisch, T.F., 2019, June. Softsku: Optimizing server architectures for 
microservice diversity@ scale. In Proceedings of the 46th International Symposium on Computer Architecture 
(pp. 513-526).

16.	Familiar, B., 2015. Microservices, IoT, and Azure (pp. 69-93). Berkeley, CA: Apress.
17.	Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T. and Mazzara, M., 2018. From monolithic to 

microservices: An experience report from the banking domain. Ieee Software, 35(3), pp.50-55.
18.	Guo, D., Wang, W., Zeng, G. and Wei, Z., 2016, March. Microservices architecture based cloudware 

deployment platform for service computing. In 2016 IEEE Symposium on Service-Oriented System Engineering 
(SOSE) (pp. 358-363).

19.	Munonye, K. and Martinek, P., 2020, June. Evaluation of Data Storage Patterns in Microservices Archicture. 
In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE) (pp. 373-380). IEEE.

20.	Parekh, J., Moroney, A., Golani, L. and Shankarmani, R., A Timestamp based Novel Caching Mechanism 
for Distributed Web Systems. International Journal of Computer Applications, 975, p.87-88.

21.	Fajardo, M.E., 2020, November. Building Microservices for Scalability and Availability: Step by Step, 
from Beginning to End. In New Perspectives in Software Engineering: Proceedings of the 9th International 
Conference on Software Process Improvement (CIMPS 2020) (Vol. 1297, p. 169). Springer Nature.

Фалькевич В.Г., Лісняк А.О. МЕТОДОЛОГІЯ ІНВАЛІДАЦІЇ КЕШУ 
У МІКРОСЕРВІСНІЙ АРХІТЕКТУРІ ВЕБ ДОДАТКІВ

У статті розглянуто наявні підходи, методи використання кешування в масштабованих веб-системах 
та рішення, запропоновані в супутніх роботах. Створено методологію інвалідації кешу в мікросервесній 
архітектурі. Об’єктом дослідження є процес створення методології оновлення кешу. Методи дослідження 
базуються на моделюванні процесів управління кеш-пам'яттю та взаємодії сервісів. Визначено вимоги до 
систем інвалідації кешу: розподіл зобов’язаностей, інвалідація лише частини кешу, запобігання повторному 
оновленню кешу за часом, неблокуюча операція. Описано всі етапи взаємодії компонентів системи, що 
включають API шлюз, кеш-сервіс, кеш-пам'ять, сервіси додатку. Розглянуто приклади використання 
додатку та кеш-сервісу для підтримки актуальності кеш-системи. У статтю включено один рисунок 
зі схематичними компонентами архітектури додатку, дві діаграми послідовності з етапами взаємодії 
елементів системи у часі під час виконання та обробки запиту. Визначено основні принципи в архітектурі 
мікросервісів із кеш-системою: абстрагування інвалідації кешу від внутрішніх сервісів до кеш-сервісу 
шляхом створення схеми кешу для кожного сервісу; опис правил підготовки відповідей API; запит до кешу 
від служб лише через кеш-сервіс; використання API-шлюзу як маршрутизатора між сервісами; зміна схеми 
кешу не повинна впливати на роботу сервісу кешу. Досліджено базові необхідні правила для інвалідації кешу: 
схема кешу, схема відповіді (або обробник даних для підготовки відповіді), дія. Схема кешу описує об’єкт 
данних з поточного сервісу з наявного запиту, що зберігатиметься у кеш-системі; обробник відповіді 
або схема відповіді – це правила або готова до використання функція (після декодування) для підготовки 
відповіді до відправлення клієнту. Дія як тип команди, яку необхідно виконати при оновленні кешу сервісом 
після отримання відповіді (створити, оновити, видалити).

Ключові слова: кеш, PASS, Redis, Memcashed, ElastiCache, Memorystore, API, інвалідація кешу, 
мікросервіс.


