InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

UDC 004.9
DOI https://doi.org/10.32782/2663-5941/2023.1/20

Falkevych V.G.
Zaporizhzhia National University

Lisniak A.0.
Zaporizhzhia National University

METHODOLOGY OF CACHE INVALIDATION IN MICROSERVICES
ARCHITECTURE OF THE WEB APPLICATIONS

In the article are considered existing approaches, methods of using cashing in scalable web systems and
decisions proposed in related works. Created a methodology of cache invalidation in microservices archi-
tecture. The object of researching is a process of creating a methodology of cache invalidation. Methods of
researching are based on modeling cache management processes and services cooperation. Defined require-
ments for cache invalidation systems: splitting of area responsibilities, invalidation only part of caching, pre-
vention of repeating cache invalidation by time, non-blocking operation. Described all steps of the system’s
components cooperation that includes API gateway, cache service, cache, application services. Described
examples of using an application with cache service for keeping cache fresh. In the article are included 1 figure
with schematic components of the application architecture, 2 sequence diagrams with steps of system elements
cooperation in time. Defined main principles in the microservices architecture with cache system: cache inval-
idation abstraction from the inside services to the cache service by creation cache schema for every services;
describing rules of preparation API responses, requesting to the cache from services only through the cache
service, using API gateway as a router between services, changing cache schema should not affect to the work
of the cache service. Researched base necessary rules for cache invalidation: cache schema, response schema
(or response prepare handler), action. Cache schema describes an object as value from the service depend
on type and name of the request; response handler or response schema — are rules or ready for using function
(after decoding) for preparing response before client receives response. Action — is a type of command that
should be done (cmeopumu, onogumu, guoarumu,).

Key words: cache, PASS, Redis, Memcashed, ElastiCache, Memorystore, API, cache invalidation, microservice.

Problem definition. Nowadays the understanding
of'using microservices approaches in the development
of scalable projects have become a necessity.
Code splitting, areas of responsibility, business
logic and views is a common using practice for
modern developers. Users become more templated,
systems are more demanded of resources. Ways
of optimization are improved everyday, same as
technologies which allow us to achieve these goals
[1]. Using caching methodologies and different ways
allow to decrease loading for servers, help to make
systems more effective and scalable, reduce count
of requests to databases and catching deadlocks,
time for making selection data for next calculation
before response [2]. A key-value storage is one of
the best ways to get access to useful data without
heavy selection demand of resources. But nothing is
taken nowhere and does not lead anywhere. Every
improvement resolving some field of problem brings
another inconvenience. For instance, managing cache
storage, making additional infrastructure which
allows it to work with this storage, scaling storage,

mechanisms of synchronization with databases.
Another inconvenience we can face with — is getting
expired data.

Analysis of recent research and publications.
Considering cache systems and approaches can be
highlighted the most popular and common using of
them: Memcached or Redis. Cache — is a key-value
storage which keeps data in memory without saving it
like persistent files [3]. It allows you to avoid a process
of reading/writing data from files to RAM. So Redis
or Memcached allows you to get stored data as fast as
RAM memory can do it. Many companies offer ready
solutions like cloud caching like PASS (platform as
service), for example, Amazon ElastiCache, Google
Memorystore etc.

Describe the principle as cache works. When an
application tries to get some data from a database,
make a request to the cache. If the data by key exists,
return it. In another way return data from the database
and store in the cache to further requests. Saving data
in cache is necessary to set up time for caching. It can
be a timestamp with the date when cache by key was

131

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

written [4]. Having timestamp different approaches
can be implemented for keeping data in the cache
fresh. For instance, cache can be invalidated by
comparing actual time with timestamp when a request
is made by an application. Another way implies using
planning tools like CRON for invalidation cache
bypassing all keys step by step comparing actual date
with timestamp [5].

First way of cache invalidation can seem more
preferable than bypassing all values. But it can also
have disadvantages. To point them consider using
caching in MVC systems (model view controller).
Model is responsible for getting data. It can be data from
a database or data from API. Writing models developers
should make decisions about what data should be stored
in cache, what data can be updated [5]. Similar approach
can be proposed in modern front-end development
using UI building libraries like React, Angular, VuelS
on the rope with local cache management using Apollo
GraphQL. In both cases developers should make
decisions about which data should be updated in cache.
It would be good to have an opportunity for flexible
tools for cashing. But returning to the principle of code
and duties splitting, the logic of cashing and business
logic intertwines in the code [6, p. 136].

The main reason why developers make decisions
about the necessity of updating cache is that no one
wants to get expired data. Should be another way
for working with cache. Microsoft has offered to use
NCache instead Redis for caching. This technology
allows synchronization with databases [2].
Developers should not describe caching mechanisms
in their code that allow them to follow the fifth rule
of SOLID principle (Dependency Inversion. Depend
upon abstractions, not concretics).

Take a look at NCache in detail. There are some
available features using this technology:

1. Pub/Sub Messaging;

2. cache distribution;

3. SQL searching and grouping;

4. database synchronization.

The publishing-subscribing messaging pattern
allows senders of messages, called publishers, to be
sent directly to specific receivers, called subscribers,
but instead categorize published messages into classes
without knowledge of which subscribers. The events
are published outside the microservice, to the NCache
message broker [2]. Each subscriber microservice
contains an event handler to handle the appropriate
event once the publisher microservice has published it.

NCache being In-memory distributed cache allows
microservices to provide scalability and handle a
larger number of transactions.

132 Tom 34 (73) N2 12023

When so much data is being stored in cache by
microservices for their app data caching needs,
then having the ability to quickly find relevant data
through SQL searching or grouping make it very easy
to process it [1].

Another feature proposed by Microsoft is
database synchronization. When the database
receives some changes, the specific field in the cache
also updates. To use this opportunity it is necessary
to set up a connection with the database first using
API and describe procedures of cache and database
synchronization, which consist of next steps:

1. creating a dependency with stored procedure;

2. getting an item from the database;

3. generation a unique id for the item;

4. creating a new cache item and adding
dependency to it.

Using database synchronization mechanism it is
possible to describe all entities that should be updated
in cache when database updates. It avoids using
expired cache and supports splitting responsibilities
comparing the way developers should make decisions
when cache should be updated [7, p. 14]. The main
disadvantage in using this approach is binding to
certain databases and stack of technologies. If a
developer changes NCache to Redis or Memcashed he
loses an opportunity to use database synchronization.
It is necessary to have a unified mechanism of keeping
cache fresh [8, p. 43].

The main purpose of this article is considering
existing approaches, methods of using cashing
in scalable web systems and decisions proposing
in related works. Will be found and offered a
methodology of cache invalidation in microservices
architecture. The object of researching is a process
of creating a methodology of cache invalidation.
Methods of researching are based on modeling cache
management processes and services cooperation.

Main research material. Moving ahead in
considering systems and technologies for caching
becomes obvious that cache should be invalidated to
prevent working with expired data. Developers should
follow the fifth principle of SOLID (dependency
inversion) and split areas of responsibilities [9, p. 230].

One of the ways to do that is creating an independent
mechanism for cache invalidation using cache service
and providing cache schema from the services.

Define requirements for cache invalidation
methodology:

— splitting of area responsibilities;

— invalidation only part of caching;

— prevention repeating cache invalidation by time;

— non-blocking operation.

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

According to the inverse dependency principle,
cache invalidation implementation should not depend
on microservices logic like microservices logic and
vice versa [10, p. 179].

Invalidation mechanism should not affect cache
that should not be updated. Simultaneously all levels
of caching should be invalidated by time. If the
part of cache is invalidated by event, the timestamp
when cache was rewritten should be updated also.
An operation for cache updating is sent after service
has been worked and should obey similar rules. If a
request to the service and next response initiates the
cache updating, finite users should not await when
cache updates. Another similar operation that can be
sent by service at the same time when cache updating
should not rewrite or interrupt to work for the system
[11, p. 1156].

To achieve these requirements, take a look at
figure 1. The diagram is described here, has next
components:

— API gateway;

— cache service;

— cache;

— application services.

API gateway receives all requests from the client
and redirects them to services. Services should
have schemas that describe a memoization value in
the cache. That schemas can be changed and cache
invalidation continues working correctly. All services
get cache using API gateway through cache service
for connection to the cache system. Using cache
schema cache service can update, add or delete
memoized values. At the same time when the first
service responds, the data is sent from the service can
be used in another service without waiting for cache
service updates.

Cache service — is
responsibilities:

— updating cache using service's cache schema
with data;

— getting data from cache for service.

A process of updating cache should be in parallel
with working application services. That means no
one services and API gateway should not wait when
cache will be updated [12, p. 157].

Consider in detail how the cache invalidation
system works (figure 1). For instance, there is a
request that creates a new book in the database. After
this action happens we would like to add this book to
the cache without rewriting all books. Making a POST
request /books/create by client through API gateway
the request is redirected to the service responsible for
this route and method [13, p. 54].

an essence that has

Cache area responsibility Services
© . 5 O
Cache Cache senice
Sevvicn 1 Daipbany
AR Gal Eia
| Application = o
=i Lereize lous ervien
=i
=]

Fig. 1. application architecture with a cache system

Next step — is processing input data by Book service
and creating a new book in the database. After that
the service responds to the API gateway and provides
a cache schema with data about the created book.
The gateway makes routing to the service responsible
for cache invalidation and provides new data and the
schema. Cache service reads the schema and connects
with cache and calculates updates depending on input
data [14, p. 28; 15, p. 519].

The schema for caching should include
comprehensive information about type of request
(create, update, delete), structure for caching and also
can be provided rules for data normalization before
response is returned to the client. That means the API
should not include overhead information in the response
about the action that happened. But at the same time
the cache service needs data to work with, however
this data is not to be used in the response. Describing
rules for preparation response we can move the logic
of preparation of the data for response on another level
of abstraction. For example, it is possible to create a
service, responsible only for data preparation before
response received by client [16, p. 89; 17, p. 52].

Clagnt AP Diaserwary Bk Cacha Servics
1 |
| |

CHani makes | |
POST requnai | |
‘bookucroals | |
| |
| Sending dala |
| for croating & rew book __l
t Ll
| |
| Book ssrvioe croates |
| i FhiA B |

SOrviCe IS0 NILETE 0 SChEmE
af tha cache or invakdation

|
Sanilirg roapands and e

schaema Inom i S8nicH
Tow cache irvalidation

Y

'y
i
:
-
:
g

Fig. 2. A process of cache updating using cache service

133

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

That service receives data, rules for data
preparation, makes preparation and responses to the
client through API gateway [18, p. 360].

Cache updating process can take time and there is
not any guarantee that this process is finished before
the next request is called. Considering this aspect
of asynchronous mechanism cache invalidation and
working services during one request, it is necessary to
create a queue in the cache service and keep processes
here. Only after the first process finishes, the next can
be started [19, p. 375].

Chart AP Galiwiy Book Cachay Soradn

Cligra i
GET rspaist

J/books
A

Aps Galnnay makes & regues!
i B rvicn Dooks

Catnng iNgYuCIong o
conract with the cache senaco

|
| Malking B et

| I el bty Advicay

| and askarsg boolks from The oot
[
|
|

L J

Fig. 3. A process of getting a list of books
from the cache

Take a look at the next example: we make a GET
request/books for getting a list of books (figure 3).
First step — is making a request from client to the
API gateway and it makes route to the Book service.
This service makes a request to the cache service for
checking books in the cache through API gateway.
If books are found in the cache, the Book service
creates a response. Otherwise this service makes a
request from the database and gets books from it.
Responding without schema of cache invalidation
API gateway understands that response is finite and it
is not necessary to call cache service [20, p. 87].

Considering peculiarities of working services
with cache must be mentioned working services with

each other how data can be delivered from service
to service. For example, an author has private books
and additional fields that can not be delivered to the
not authorized user and the author wants to add new
characteristic values to one of his books. In the case
when we should be routed to the Auth service (a
service responsible for authorization), get user's data
(if credentials succeed) and get books as authorized
author from another service, the Auth service calls
the Book service through API gateway. Then the last
service creates a new characteristic to the one of the
author's book, prepares rules for normalizing the
response to the client, sending schema for the cache
invalidation [21, p. 169].

Conclusions. Considered existing approaches,
methods of using cashing in scalable web systems
and decisions are proposed in related works. Created
a methodology of cache invalidation in microservices
architecture. Have formulated the requirements for
cache invalidation methodology consists of:

— splitting of area responsibilities;

— invalidation only part of caching;

— prevention repeating cache invalidation by time;

— non-blocking operation.

Have proposed a full flow of cache invalidation.
Considered components of the application architecture
with the cache invalidation mechanism:

— API gateway;

— cache service;

— cache;

— application services.

Described examples of using an application with
cache service for keeping cache fresh. In summary,
are defined main principles in the microservices
architecture with cache system: abstraction from the
services to the cache service by creation cache schema
for every services; defined rules of preparation API
response after a service responses; requesting to the
cache from services only through the cache service;
using APl gateway as a router between services;
changing cache schema should not affect to the work
of the cache service.

Bibliography:
1. Scale Microservices Performance with Distributed Caching. URL: https://www.alachisoft.com/blogs/
scale-microservices-performance-with-distributed-caching.
2. Cache Data Dependency on Database. URL: https://www.alachisoft.com/resources/docs/ncache/prog-

guide/notification-based-dependencies.html.

3. KemmpoBanwe maHHBIX MEXITy MUKpOcepBHcaMu B 6eccepepHoit apxutektype. URL: https://habr.com/

ru/post/651829.

4. Kommpopanue B oOmauHom mpunoxkennd. URL: https://learn.microsoft.com/ru-ru/dotnet/architecture/

cloud-native/azure-caching.

5. Kemmposanue B Laravel: ocHoBsI mmtoc tips&tricks. URL: https://habr.com/ru/post/463495.
6. Charan, P.S.B., Varshitha, G., Lashya, A., Varma, U.S.R. and Madhusudhan, D., REDIS: IN MEMORY

DATA STORE. 2022. Ne 5. P. 132—-138.

134 Tom 34 (73) N2 12023

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

7. Gupta, P., Zeldovich, N. and Madden, S., 2011. A trigger-based middleware cache for ORMs. In Middleware
2011: ACM/IFIP/USENIX 12th International Middleware Conference, Lisbon, Portugal, December 12-16, 2011.
Proceedings 12 (pp. 329-349). Springer Berlin Heidelberg.

8. Ghandeharizadeh, S. and Shayandeh, S., 2007, April. Greedy cache management techniques for mobile
devices. In 2007 IEEE 23rd International Conference on Data Engineering Workshop (pp. 39-48). IEEE.

9. Katsaros, D. and Manolopoulos, Y., 2003. Cache management for Web-powered databases. In Web-
Powered Databases (pp. 203-244). IGI Global.

10. Liu, Q. and Yuan, H., 2019. A High Performance Memory Key-Value Database Based on Redis. J. Comput.,
14(3), pp.170-183.

11. Carra, D. and Michiardi, P., 2014, June. Memory partitioning in memcached: An experimental performance
analysis. In 2014 IEEE International Conference on Communications (ICC) (pp. 1154-1159). IEEE.

12. Gan, Y. and Delimitrou, C., 2018. The architectural implications of cloud microservices. IEEE Computer
Architecture Letters, 17(2), pp.155-158.

13. Pavlenko, A., Askarbekuly, N., Megha, S. and Mazzara, M., 2020. Micro-frontends: application of
microservices to web front-ends. J. Internet Serv. Inf. Secur., 10(2), pp.49-66.

14. Brown, K. and Woolf, B., 2016, October. Implementation patterns for microservices architectures. In
Proceedings of the 23rd Conference on Pattern Languages of Programs (pp. 1-35).

15. Sriraman, A., Dhanotia, A. and Wenisch, T.F., 2019, June. Softsku: Optimizing server architectures for
microservice diversity@ scale. In Proceedings of the 46th International Symposium on Computer Architecture
(pp. 513-526).

16. Familiar, B., 2015. Microservices, loT, and Azure (pp. 69-93). Berkeley, CA: Apress.

17. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T. and Mazzara, M., 2018. From monolithic to
microservices: An experience report from the banking domain. Ieee Software, 35(3), pp.50-55.

18. Guo, D., Wang, W., Zeng, G. and Wei, Z., 2016, March. Microservices architecture based cloudware
deployment platform for service computing. In 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE) (pp. 358-363).

19. Munonye, K. and Martinek, P., 2020, June. Evaluation of Data Storage Patterns in Microservices Archicture.
In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE) (pp. 373-380). IEEE.

20. Parekh, J., Moroney, A., Golani, L. and Shankarmani, R., A Timestamp based Novel Caching Mechanism
for Distributed Web Systems. International Journal of Computer Applications, 975, p.87-88.

21. Fajardo, M.E., 2020, November. Building Microservices for Scalability and Availability: Step by Step,
from Beginning to End. In New Perspectives in Software Engineering: Proceedings of the 9th International
Conference on Software Process Improvement (CIMPS 2020) (Vol. 1297, p. 169). Springer Nature.

®annkesnu B.I, Jicask A.O. METOIOJIOT IS IHBAJII AL KEIITY
Y MIKPOCEPBICHIM APXITEKTYPI BEB JIOTATKIB

Y ecmammi posansrymo nasgni nioxoou, Memoou BUKOPUCIAHHSL KEULYBAHHS 8 MACUUIMADOBAHUX 8€0-CUCTEMAX
ma piienHs, 3anpononosani 6 cynymix pobomax. Cmeopeno memooono2ito ineanioayii keuty 6 MiKpocepeecHii
apximexmypi. 06 €kmom 00CTIONCEHHS € NPOYEC CMBOPEHHS MEMOO0A02IT OHOGIeHHsL Keuty. Memoou 00caioxicenHs
0azyromvCsl Ha MOOET0BANHI NPOYECi8 YNPAGTIHHI Keul-nam simmio ma 83aemodii cepsicie. Busnaueno sumoau 00
cucmem iHeanioayii keuty: po3nooin 30008 ‘A3aHocmel, IH8ANOAYIsL Iuuie YACMUHU Keuty, 3anobieanHs ROGMOPHOMY
OHOGIEHHIO Keuly 3a 4dacom, HebloKyloua onepauiﬂ. Onucano 6ci emanu 63a€mMo0ii KOMHOHEHMI8 cucmemu, ujo
sxmouaroms APl winio3, xewi-cepsic, xew-nam'same, cepgicu 0odamky. Posenamymo npuxnaou euxopucmauus
000amKy ma Keui-cepsicy Onisl NIOMPUMKU AKMYAbHOCMI Keuwl-cucmemu. Y cmammio 8KIH0YeHO 0OUH PUCYHOK
30 cxeMamuyHuMU KOMINOHEHMAaMU apXimeKkmypu 000amky, 06i diazpamu NOCHO08HOCMI 3 emanamu 63aemMooii
eneMenmie cucmeMm y 4aci nio Yac BUKOHAKHS ma 06poOKu 3anumy. Busnaueno ocrnoeHi npunyunu ¢ apximexmypi
MIKpOCep8Icig i3 Keui-CUcmemoro. abcmpazy8ants iHeanioayii xeuty 6i0 6HYMpIuHIX cepesicie 00 Keut-cepeicy
ULTISIXOM CIBOPEHHSL CXeMu Keuly OJis1 KOJICHO20 Cepaicy; Onuc npasui niocomosku eionosioeil API; sanum oo keuty
810 C1yoch uuLe uepes Keui-cepsic; sukopucmantsa API-uniosy Ak Mapupymuzamopa Mixc cepgicamu; 3MiHa cxemu
Keuty He NOGUHHA 8NAUSAmMU Ha pobomy cepeicy Keuty. J{ociodiceno 6a306i HeoOXIOHI npasuia 05 IHEaniOayii keuty:
cxema Keuty, cxema 6ionosioi (abo 06pobHuK Oanux 01 ni020mosKu 6ionosioi), dis. Cxema Keuty onucye ob ‘ekm
OQHHUX 3 NOMOYHO20 CePBICY 3 HASAGHO20 3aNUNy, Wo 30epieamumemvcs y Keul-cucmemi; 0OpoOHUK 8i0nosioi
abo cxema 6i0ONosIOl — ye npasuia abo 20mosa 00 SUKOPUCMAHHS (BYHKYIs (NIcis 0eKoOY8anHs) O/ NI020MOSKU
8i0n0eioi 00 sionpasnents kuicumy. [is sk mun KoMauou, siKy HeoOXiOHO BUKOHAMU NPU OHOBNEHHT Keuly cepeicom
nicis OMpUMAHHsL 8ION0GIOI (CMEopUumu, OHOBUMU, BUOATUMLL).

Kniouogi cnosa: rxew, PASS, Redis, Memcashed, ElastiCache, Memorystore, API, ineanioayis xeuty,
MiKpocepasic.

135

